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Abstract—Viewing distance and image resolution have substan-
tial influences on image quality assessment (IQA), but this issue
has been highly overlooked in the literature so far. In this paper,
we examine the problem of optimal resolution adjustment as a
preprocessing step for IQA. In general, the sampling of visual
information by human eyes’ optics is approximately a low-pass
process. For a given visual scene, the amount of the extractable
information greatly depends on the viewing distance and image
resolution. We first introduce a novel dedicated viewing distance-
changed image database (VDID2014) with two groups of typical
viewing distances and image resolutions to promote the IQA
study for this issue. Then we design a new effective optimal scale
selection (OSS) model in dual-transform domains, in which a
cascade of adaptive high-frequency clipping in the DWT domain
and adaptive resolution scaling in the spatial domain is used.
Validation of our technique is conducted on five image databases
(LIVE, IVC, Toyama, VDID2014 and TID2008). Experimental
results show that the performance of PSNR and SSIM can be
substantially improved by applying these metrics to OSS model
preprocessed images, superior to classical MS-PSNR/SSIM and
comparable to the state-of-the-art competitors. Matlab codes of
our algorithm and the VDID2014 database will be available at
https://sites.google.com/site/guke198701/publications.

Index Terms—Image quality assessment (IQA), subjective/
objective assessment, viewing distance, image resolution, adaptive
resolution scaling, adaptive high-frequency clipping

I. INTRODUCTION

IMAGE quality assessment (IQA) is an important research
area due to its possible application in the development and

optimization of various image processing algorithms [1]-[5].
Generally, IQA can be divided into both subjective assessment
and objective assessment. The former one aims to obtain mean
opinion scores (MOSs) through expensive and complicated
subjective viewing tests. This usually causes subjective as-
sessment not practical for real-time applications despite the
fact that it is always known as the ultimate quality measure.
Last decades have witnessed the rise of a large quantity of
objective full-reference (FR), reduced-reference (RR) and no-
reference (NR) IQA approaches. Since the original image is
sometimes not accessible, several researches in recent years
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have been devoted to the exploration of RR and NR IQA [5]-
[11]. Nonetheless, these two types of IQA techniques were
mainly effective for specific distortions, such as blur, noise,
image compression and contrast change, and their performance
results are not often satisfied.

In reality, most existing high-accuracy IQA methods were
developed for the FR scenario [12]-[21]. To date, the peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [13] are perhaps the most popular benchmark models,
which have been embedded into many image/video processing
systems. Thereafter, Wang et al. further proposed multi-scale
SSIM (MS-SSIM) [14] by estimating quality in each scale
level before integrated with psychophysical weights, and also
developed information content weighted PSNR/SSIM (IW-
PSNR/SSIM) [16] by fusing the MS model with the natu-
ral scene statistics (NSS) inspired visual information fidelity
(VIF) [15]. Lately, the MS model was also used widely, e.g.
internal generative mechanism (IGM) [19].

However, it has been argued in the survey about IQA [22]
that the common subjective image quality databases [23]-[25]
separately used distinct selection modes for viewing distances
and image resolutions1 during subjective tests, although some
recommendations regarding the viewing distance with respect
to monitor resolution have been given for television pictures
[26], multimedia [27], 3DTV [28], flat panel displays [29], and
mobile devices [30]. In fact, besides these recommendations,
the viewing distance is largely determined by other factors,
such as the size of house and the location of furniture. Given
a fixed monitor size, higher level compression can be made
as the viewing distance becomes farther, in order to save the
bandwidth without the loss of the quality of experience (QoE),
and thus some modifications to existing IQA measures should
be done as well. Obviously, the MS model of constant weights
for fixed levels tends to work ineffectively in different viewing
distances and image resolutions.

To specify, the QoE, on one hand, is seriously influenced
by the image/video resolution, which promotes the constant
pursuit of high-definition technologies, and on the other hand,
it is also strongly affected by the viewing distance. An example
in Fig. 1 reveals distinct perceptual quality for the same frame
resolution and the same environment but at different viewing
distances. The left video stream is encoded with 8Mps bitrate,
25f/s framerate and the resolution of 1920 × 1080, while the
other is created using the same parameters but at 2Mps bitrate

1Note that the image resolution is different from the image size (in display),
which should be the image resolution multiplied by dot pitch of the screen.
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Fig. 1: Video displayed at the viewing distances of four and six times the image weight. Three representative regions are highlighted with
red rectangles in each video screen for comparison.

for comparison. These two pictures were captured by using a
digital camera which was configured to simulate the behavior
of human eyes as much as possible. We highlighted three
representative areas with red rectangles in each video screen.
The left subfigure was taken at the distance of four times the
video height, and we can easily observe the difference between
two video frames. The right subfigure presents an image taken
at the distance of six times the video height, but this time, the
difference is hardly found. This phenomenon can be explained
by the fact that the perception to image details mostly depends
on the effective resolution of the human visual system (HVS).
As the viewing distance increases, the viewing angel shrinks
and less image details can be noticed. As a result, we believe
that it is necessary to consider viewing distances and image
resolutions in IQA designs for images/videos.

For a comprehensive test and comparison of our technique
with existing related models, we first propose a new dedicated
viewing distance-changed image database (VDID2014). This
database consists of 160 images generated from eight pristine
versions of two typical aspect ratios (height/width), and 320
differential MOS (DMOS) values collected from 20 inexperi-
enced observers at two typical viewing distances, i.e. four and
six times of the image height in terms of the ratio of the two
physical distances.

Traditionally, most studies of objective or subjective assess-
ment were separately conducted, as shown in Fig. 2(a). The
former works to compute the local distortion map followed
by an effective pooling method, while the latter uses relevant
methodologies (e.g. single-stimulus) to collect human ratings
of image quality before processing the raw data to remove
biased scores. As stated above, objective metrics regardless
of viewing conditions are not reasonable. Despite the signifi-
cance, very limited efforts have been made for this issue [22].
Hence we in this paper devote to deploying the impact of
viewing distances and image resolutions on IQA, thus to make
quality metrics work better and more practical. Note that many
mechanisms of the HVS, e.g. masking effects, have serious
influence on visual quality, but they have been widely inserted
into existing IQA tasks. We thereby leave these mechanisms
aside, and focus on exploring the effect of viewing distance
and image resolution in this research.

A simple self-adaptive scale transform (SAST) model [31]
was lately designed to simulate the spatial filtering mechanism
of the HVS. Its fundamental idea is to estimate the suitable

(a) (b)

Fig. 2: Flowcharts of: (a) traditional objective and subjective assess-
ments; (b) objective assessment considering viewing distances and
image resolutions in an extra preprocessing stage.

scaling parameter from the original image resolution and the
given viewing distance before resizing input images to boost
the performance. Instead of using the spatial domain, another
recent work [32] focused on discarding part of image details
by adaptive high-frequency clipping (AHC) in the discrete
wavelet transform (DWT) domain, and then synthesizing the
AHC model filtered subband coefficients back to an image at
its original resolution to be used by IQA metrics.

It is natural to combine the above two models to derive a
more effective preprocessing method, so as to better remove
undiscernible details caused by the varying viewing distance
and image resolution in different but complementary domains.
We also found that the real viewing field are not identical for
the testing images with the same image height and viewing
distance but distinct widths. The human eyes’ physiological
structure indicates that, in this situation, the perceived image
resolution can be adjusted by flattering or thickening the
crystalline lens [33]. So a new optimal scale selection (OSS)
model in spatial and DWT domains is proposed by resizing
the AHC model filtered images to the optimal scale estimated
using the improved SAST model that considers the human
eyes’ physiological mechanism.

The remainder of this article is organized as follows. In
Section II-III, we respectively introduce the new VDID2014
database and the proposed OSS model. Section IV compares
our OSS model based IQA methods with competitive quality
metrics on five databases (LIVE [23], IVC [24], Toyama [25],
VDID2014 and TID2008 [34]). We finally summarize the
contributions and conclude the paper in Section V-VI.
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II. THE VDID2014 DATABASE

To thoroughly understand the impact of viewing conditions,
we construct a new dedicated VDID2014 database with two
classes of typical viewing distances and image resolutions used
in classical image databases. It has been mentioned that both
above two factors substantially affect human perceptions of
image/video quality. But most existing image databases, even
those with clear records of viewing conditions, do not take into
account the effects of viewing distances and image resolutions
on the research of perceptual IQA.

The VDID2014 database includes eight pristine images with
resolutions of 768×512 and 512×512, as exhibited in Fig. 3.
A total number of 160 images were produced by adding four
commonly encountered distortion types: Gaussian blur, white
noise, and JPEG2000 and JPEG compressions.

1) Gaussian blur: We utilized Gaussian kernels (standard
deviation σG = 0.25, 0.5, 1, 1.75, 2.5) and a 11×11
window with Matlab commands fspecial and imfilter.
Each of R, G and B image planes was blurred by the
same kernel.

2) White noise: Noise generated from a standard normal
pdf of variance σ2

N (= 0.0003, 0.001, 0.003, 0.01, 0.03)
was added to each of the three channels R, G and B
with the imnoise Matlab function.

3) JPEG2000: We used the Matlab imwrite command to
create JPEG2000 compressed images by setting the Q
parameter as 15, 30, 60, 120, 240.

4) JPEG: The Matlab imwrite command was used to
produce JPEG compressed images with five quality levels
(Q = 75, 45, 25, 10, 5).

The experiment was conducted using a single-stimulus (SS)
method according to ITU-R BT.500-13 [26]. We designed an
interactive system to automatically display the test images
and collect the subjective quality scores using graphical user
interface (GUI) in MATLAB, similar to that used in [4]. 20
inexperienced subjects were involved in this study. Most of
viewers were college students with various kinds of majors.
The entire test was classified into two consecutive sessions,
with viewing distances of four and six times the image
height. In each session, every subject viewed and graded 160
images. The presentation order was randomized for reducing
memory effects on opinion scores. During rating each image,
the subjects were asked to provide their overall sensation of
quality on a continuous quality scale from 0 to 1. Table I
summarizes major information about the test conditions and
parameters.

Next, the gathered 320 subjective DMOS values were
computed for all testing images. First, we set zabc as the score
provided by subject a to the distorted image Ib at the viewing
distance of c times the image height, where a = {1, ..., 20},
b = {1, ..., 160}, c = {4, 6}. And z′abc indicates the original
image’s score which is defined similarly to zabc. Specifically,
we processed the data as follows:

1) Differential scores: The raw rating assigned to an image
was subtracted from the rating assigned to its reference
image to form the DMOS value dabc = zabc-z′abc.

Fig. 3: Eight lossless natural images with resolutions of 768× 512
and 512× 512 used in the VDID2014 database.

TABLE I: Subjective experimental conditions and parameters.

Method Single-stimulus (SS)
Evaluation scales Continuous quality scale from 0 to 1

Color depth 24-bits/pixel color images
Image coder Portable Network Graphic (PNG)

Distortion type JPEG2000, JPEG, blur, noise
Subjects Twenty inexperienced subjects

Image resolution 768× 512; 512× 512
Viewing distance Four / six times the image height

Room illuminance Dark

2) Outliers screening: The subjective scores are easy to be
contaminated by outliers given by inattentive subjects.
To avoid this, we screened the outliers of all viewers’
ratings using the method in [35]. Particularly, we adopted
a simple outlier detection by treating raw DMOS value
for an image to be an outlier if it was outside an interval
of the standard deviation width about the mean score for
that image.

3) Mean score: The final DMOS for the image Ib is defined
as 1

NA

∑
a dabc, where NA is the number of subjects.

To show the value of building VDID2014 database with
different viewing distances and image resolutions, we compute
and plot the distributions of quality scores gathered from the
test in Fig 4: the left plot (overall database) stands for the
histogram of all processed opinion scores, while the middle
plot (part 1) and right plot (part 2) independently indicate the
histograms of DMOS values acquired at the viewing distance
of four and six times the image height. We can easily find in
the latter two plots that, for the same images, the mean score
in part 2 (six times the image height) is clearly smaller than
that in part 1 (four times the image height), which is mainly
caused by different viewing distances.

III. METHODOLOGY

Presently, the most popular FR IQA algorithms are perhaps
PSNR and SSIM, because of their wide adoption in various
image processing systems. PSNR is computed from the mean-
squared error (MSE), which quantifies the energy difference
between the reference and distorted images. Suppose that ri
and di are the i-th pixel values in the reference image r and its
distorted image d. The MSE and PSNR are defined as MSE =
1
M

∑M
i=1(ri − di)2 and PSNR = 10 log10(

2552

MSE ), where M is
the total number of pixels in the image.
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Fig. 4: Histogram of differential mean opinion scores (DMOSs) collected in the subjective viewing test of the VDID2014 database.

The basic idea of SSIM is to incorporate local luminance,
contrast and structural similarities between the reference and
distorted images [13]. To be more concretely, the luminance,
contrast and structural similarities are defined by

l(r,d) =
2µrµd + c1
µ2
r + µ2

d + c1
(1)

c(r,d) =
2σrσd + c2
σ2
r + σ2

d + c2
(2)

s(r,d) =
σrd + c3
σrσd + c3

(3)

where c1 to c3 are three small fixed values to avoid insta-
bility when the denominators are close to zero. A 11 × 11
circular-symmetric Gaussian weighting function g = {gi|i =
1, 2, . . . , N} having standard deviation of 1.5 and normalized
to unit sum (

∑
N
i=1gi = 1) is used here. The statistics µr, µd,

σ2
r , σ2

d and σrd follow the definitions in [13]. The final SSIM
score is acquired by

SSIM =
1

W

W∑
i=1

l(ri, di) · c(ri, di) · s(ri, di) (4)

where W is the number of local windows in the image.

A. The Downsampling Model

It has been realized that considerations of external factors
during the viewing session, e.g. the viewing distance and the
image resolution, have great influences on IQA performance.
A simple and empirical downsampling strategy for preprocess-
ing images before using SSIM was described in [22]:

Zd = max(1, round(Hi/256)) (5)

where Hi indicates the image height.

B. The SAST Model

As the viewing distance grows, the viewing angle shrinks in
a gradual way. So the downsampling model with only limited
scale parameters is not an ideal solution. For instance, at the
same distance, images with resolutions of 651×651 and 630×
630 have Zd = 3 and Zd = 2, and thereby their downsampled
images have resolutions of 217 × 217 and 315 × 315. This
suggests that the larger image will be scaled down to a smaller
resolution in some cases, which violates our common sense.
To this end, we in previous work introduced a continually-
changing resolution scaling scheme (SAST) [31].

Fig. 5: The illustration of the human visual angle in the horizontal
direction. The vertical visual angle has a similar illustration.

First, we define the visual scope Sv of human eyes for a
viewing distance D:

Sv = Hv ·Wv (6)

where Hv and Wv are the visual height and width. According
to the illustration in Fig. 5, the two variables can be obtained
by

Hv = 2 tan(
θH
2
) ·D (7)

Wv = 2 tan(
θW
2

) ·D (8)

where θH and θW separately indicate horizontal and vertical
visual angles. θH and θW are generally assigned to be about
120o and 150o [36]. Considering the fact that the real view
angle (i.e. angle of gaze) usually becomes narrower to about
one third of the common value when one concentrates on the
details of an image and scores it. We therefore choose θH and
θW to be 40o and 50o in this paper.

Second, it was observed in Fig. 1 that distinguishing tiny
artifacts in a visual signal will be more difficult with increasing
the viewing distance. On this base, the proper transform scale
Zsast can be approximated in the spatial domain by the square
root of the ratio between the image resolution and the focused
visual scope:

Zsast =

√
Hi ·Wi

Hv ·Wv

=

√
1

4 tan( θH2 ) · tan( θW2 )
· (Hi

D
)2 · 1

γ
(9)

where Hi/D is a pre-set environment parameter provided by
each image database, which will be presented in Table II, and
γ represents the aspect ratio of image height to image width
defined by

γ =
Hi

Wi
(10)

and Wi stands for the image width.
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C. The AHC Model

The image resolution scaling is essentially to discard part of
the high resolution information. To specify, image details are
hard to be found when the ratio of image height and viewing
distance (Hi/D) is small. Hence the AHC model works to
remove part of image details in wavelet subbands, thus to be
a preprocessing step for IQA [32].

The Haar wavelet decomposition was applied in the AHC,
on account of its simple mother wavelet defined as

ψ(t) =

 1 0 ≤ t ≤ 1/2
−1 1/2 ≤ t ≤ 1
0 otherwise

(11)

with the scaling function φ(t) being

φ(t) =

{
1 0 ≤ t ≤ 2
0 otherwise . (12)

Alternatively, the Haar wavelet has a good ability and a wide
application in many research fields. More details can be found
in [12]. An example of the Haar wavelet decomposition is
presented in Fig. 6 by using the “monarch” image.

Next, we introduced a weighting function to assign different
weights in each of LH, HL and HH subbands:

w = ρ · φ(kv1+v2) (13)

where v1 = l − L with l and L being the current processed
layer and the number of decomposition layers. v2 = D/D0

with D0 being a virtual baseline distance. φ is a fixed bottom
number. k is used to adjust the relative importance of v1 and
v2. In [17], the authors applied three gradient operators for
horizontal and vertical directions based on a primary study
of V1 cells that human eyes have maximum responses to
horizontal and vertical stimuli [37]. Thus this paper uses the
coefficient ρ to better retain LH and HL subbands than the
HH subband on the same level:

ρ =

{
1/2 when LH or HL
1 when HH . (14)

Each computed weight is compared with a threshold (thr = 1
in this work). If the weight is greater than the threshold, the
associated subband will be clipped out.

Actually, Eq. (13) indicates that we incline to cut off the
subband in the smaller layer (for v1 term) and at the farther
viewing distance (for v2 term). The wavelet reconstruction is
used to get the final image, as exemplified in Fig. 6. Note that
although the multi-resolution analysis is taken inside the AHC
model, the terminal output is a single-scale image with part
of high-frequency details properly erased.

D. The Proposed OSS Model

Physiological studies of human eyes suggest that light from
an object outside the eye is imaged on the retina that lines the
inside of the wall’s overall posterior portion, when the eye is
appropriately focused [33]. Despite the fixed distance between
the crystalline lens and the retina (the imaging region), the
focal length accomplishing proper focus is gained by varying
the shape of crystalline lens. The fibers in the ciliary body can
complete this task by flattening or thickening the crystalline
lens for distant or near objects. This process is called “accom-
modation”. For long distances, the negative accommodation is
to adjust the eyes by relaxation of the ciliary muscles, whereas
the positive accommodation works by contraction of the ciliary
muscles for short distances.

As a matter of fact, it was found in our subjective viewing
test that the adaptive image resolution scaling is also affected
by the aspect ratio. When one watches any image/video signal
deviated from the optimal aspect ratio, the visual field is not
exactly full of the whole image/video picture, and this makes
human eyes tend to attenuate the crystalline lens to zoom in to
the meaningful part. So we modify the transform coefficient
Zsast as follows:

Z ′sast = Z
(1− |γ−γo|β

α )
sast (15)

where α and β are both selected as 2 to control the speed of
the modification process caused by different aspect ratios. γo
means the optimal aspect ratio of human eyes. Considering that
the aspect ratio of (H:W ) 9:16 has become the most common
aspect ratio for televisions and computer monitors and is
also the international standard format of digital television and
analog widescreen television, it is reasonable to suppose the
optimal aspect ratio be what the human eyes are well suited
to, and define γo as 9:16 in this implementation. That is to
say, this function implies that the human eyes will further
adjust the transform coefficient when the aspect ratio (H:W )
is not the optimal aspect ratio. Next, we take into account that
the models by adaptive resolution scaling and adaptive high-
frequency clipping effectively work in different and comple-
mentary domains, and thus use a cascade of aforementioned
two methods (the AHC model followed by the modified SAST
model) to derive the proposed OSS model.

It needs to stress that we focus on the influence of viewing
distance and image resolution on IQA. As shown in Fig. 2(b),
with respect to the traditional framework in which the input
images are directly used to compute the objective score, in
this paper the objective assessment preprocesses input visual
signals by considering viewing distance and image resolution
before using IQA models, e.g. PSNR and SSIM.

Fig. 6: The sample image and its reconstructed one using wavelet decomposition at the distance of four times the image height.
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IV. EXPERIMENTAL RESULTS AND COMPARISON

In this section, we will testify and compare the performance
of the proposed model with 22 classical and state-of-the-art
IQA approaches, which are given as follows.

• PSNR and SSIM [13], the benchmark IQA methods with
a wide usage in the image processing literature.

• D-PSNR/SSIM, modified by the simple and empirical
downsampling strategy [22].

• SAST-PSNR/SSIM [31], performing by the adaptive res-
olution scaling before PSNR and SSIM are used.

• AHC-PSNR/SSIM [32], computing PSNR and SSIM on
the AHC model filtered image signals.

• OSS-PSNR/SSIM, systematically incorporating the AHC
model with the modified SAST model.

• MS-PSNR/SSIM [14], using PSNR/SSIM in each scale
level followed by fusing the values in different levels with
distinct weights obtained via a psychophysical test.

• IW-PSNR/SSIM [16], combining the MS and NSS models
to derive the currently optimal pooling scheme.

• FSIM [17], applying complementary phase congruency
and gradient magnitude in characterizing the image local
quality due to the fact that the HVS understands an image
mainly relying on the low-level features.

• GSIM [18], developed by emphasizing on the gradient
magnitude similarity because the image gradient conveys
visual information and favors scene understanding.

• IGM [19], decomposing an image into the predicted and
disorderly parts by the free energy based brain theory [38],
before integrating the modified PSNR and SSIM values on
those two parts with psychophysical weights [14].

• GMSD [20], predicting visual quality by a new effective
and efficient pooling scheme − the standard deviation of
the pixel-wise gradient magnitude similarity map.

• X-FSIM/GSIM (X = {D, SAST, AHC, OSS}), similar to
X-PSNR/SSIM but applied to FSIM/GSIM.

To measure those above IQA metrics, subject-rated image
quality databases are required as testing beds. In addition to
our new VDID2014, three related databases (LIVE, IVC and
Toyama) are chosen in this work. Detailed information of the
three databases is listed below as follows.

• The LIVE database [23] includes five image datasets of
982 images, which are divided into 29 original images of
nine resolutions and 779 distorted images corrupted by

TABLE II: Specifications of LIVE, IVC, Toyama and VDID2014.

Database name Image resolution (Wi×Hi) D / Hi Number
768× 512 480× 720
640× 512 632× 505

LIVE 634× 505 618× 453 3∼3.75 779
610× 488 627× 482

634× 438
VDID2014 768× 512 512× 512 4 & 6 320

IVC 512× 512 4 185
Toyama 768× 512 6 168

five distortion types. These types involve: 1) JPEG2000
compression; 2) JPEG compression; 3) White noise;
4) Gaussian blur; 5) Fast fading channel distortion of
JPEG2000 compressed bitstream. The subjective test was
carried out at the viewing distance of 3∼3.75 times the
image height. The entire raw scores are processed by an
outlier detection and subject rejection algorithm according
to [35].

• The IVC database [24] contains 185 images created from
10 sources. Four distortion types are applied: 1) JPEG
compression; 2) JPEG2000 compression; 3) Local adap-
tive resolution (LAR) coding; 4) Blurring. The resolution
of all images is regulated of 512× 512, and the viewing
distance was fixed at four times the image height.

• The Toyama database [25] consists of 168 images, which
generated by exerting JPEG and JPEG2000 compressions
on 12 natural images. The testing process was conducted
at the fixed distance of six times the image height.

Table II summarizes some relevant information about the used
image quality databases2, in order to straightforwardly show
them to the readers.

As the suggestion given by the video quality experts group
(VQEG) [39], we first apply the nonlinear regression between
the subjective ratings and the prediction scores of each IQA
method above with the four-parameter logistic function:

q(ε) =
τ1 − τ2

1 + exp (− ε−τ3τ4
)
+ τ2 (16)

where ε and q(ε) are the input and mapped scores, and τ1
to τ4 are free parameters to be determined. Then we employ
five typical performance indices to testify and compare the
proposed algorithms with the IQA metrics tested. The five
indices include Pearson linear correlation coefficient (PLCC)
for measuring prediction accuracy, Spearman rank-order corre-
lation coefficient (SRCC) and Kendall’s rank-order correlation
coefficient (KRCC) for measuring prediction monotonicity,
as well as average absolute prediction error (AAE) and root
mean-squared (RMS) error for measuring prediction consis-
tency. Concrete definitions about the above five evaluations
can be found in [7]. Note that a value close to 1 for PLCC,
SRCC, KRCC, yet close to 0 for AAE, RMS means superior
correlation with subjective human ratings.

Table III shows the performance results of 18 testing IQA
metrics on four related databases. To compare all performance
indices of those IQA measures, we further provide the average
values of PLCC, SRCC, KRCC, AAE and RMS (after the
nonlinear regression) in Table III. In this research, two kinds
of average results are reported: 1) the direct average among the
correlation scores for each quality metric; 2) the database size-
weighted average depending on the number of images in each
database, i.e. 779 for LIVE, 185 for IVC, 168 for Toyama,
and 320 for VDID2014.

2In those testing databases the information concerning the relationship of
sizes between the image and the screen has not been illustrated, so we in
this paper suppose the testing image is full of the screen/monitor height or
width with the aspect ratio unchanged, and thus obtain the D/Hi. Actually,
this number should be derived using the ratio of the two physical distances,
just as in our VDID2014 database.
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TABLE III: Performance evaluations and two averages of the competing IQA measures on LIVE, IVC, Toyama and VDID2014 databases.
The best two performed metrics in the PSNR-type and SSIM-type of algorithms are highlighted with boldface.

IQA Measures LIVE database (779 images) [23] IVC database (185 images) [24]
PLCC SRCC KRCC AAE RMS PLCC SRCC KRCC AAE RMS

PSNR 0.8701 0.8756 0.6865 10.539 13.469 0.7192 0.6886 0.5220 0.6689 0.8465
D-PSNR [22] 0.8995 0.9031 0.7227 9.4220 11.940 0.8791 0.8721 0.6922 0.4266 0.5808

SAST-PSNR [31] 0.9134 0.9160 0.7450 8.5101 11.121 0.8953 0.8889 0.6992 0.4328 0.5428
AHC-PSNR [32] 0.9295 0.9314 0.7731 7.6244 10.077 0.9107 0.9019 0.7188 0.3995 0.5032
OSS-PSNR (Pro.) 0.9304 0.9328 0.7768 7.4987 10.012 0.9123 0.9041 0.7226 0.3968 0.4990

MS-PSNR [14] 0.9071 0.9110 0.7366 8.9532 11.503 0.8388 0.8340 0.6479 0.4934 0.6634
IW-PSNR [16] 0.9329 0.9328 0.7800 7.3262 9.8394 0.9055 0.8999 0.7168 0.4100 0.5170

SSIM 0.9014 0.9104 0.7311 9.3341 11.832 0.7924 0.7788 0.5939 0.5547 0.7431
D-SSIM [22] 0.9300 0.9391 0.7768 8.2062 10.044 0.9117 0.9017 0.7221 0.3772 0.5007

SAST-SSIM [31] 0.9305 0.9448 0.7914 8.1933 10.011 0.9042 0.8905 0.7062 0.4109 0.5203
AHC-SSIM [32] 0.9321 0.9477 0.7987 8.1506 9.8967 0.9066 0.8957 0.7170 0.4047 0.5142
OSS-SSIM (Pro.) 0.9316 0.9499 0.8078 8.1000 9.9310 0.9144 0.9035 0.7291 0.3846 0.4933

MS-SSIM [14] 0.9338 0.9448 0.7927 7.7605 9.7788 0.8931 0.8846 0.7006 0.4122 0.5480
IW-SSIM [16] 0.9425 0.9567 0.8175 7.4405 9.1317 0.9228 0.9125 0.7339 0.3698 0.4693

FSIM [17] 0.9540 0.9634 0.8335 6.4647 8.1907 0.9378 0.9263 0.7566 0.3380 0.4228
GSIM [18] 0.9443 0.9561 0.8150 7.1888 8.9883 0.9390 0.9292 0.7619 0.3279 0.4190
IGM [19] 0.9565 0.9581 0.8250 6.0742 7.9686 0.9128 0.9025 0.7283 0.3783 0.4976

GMSD [20] 0.9568 0.9603 0.8268 6.1990 7.9447 0.9234 0.9148 0.7373 0.3743 0.4678

IQA Measures Toyama database (168 images) [25] VDID2014 database (320 images)
PLCC SRCC KRCC AAE RMS PLCC SRCC KRCC AAE RMS

PSNR 0.6355 0.6132 0.4443 0.7832 0.9662 0.8494 0.8678 0.6779 0.0696 0.0915
D-PSNR [22] 0.7654 0.7583 0.5605 0.6453 0.8053 0.9061 0.9163 0.7414 0.0562 0.0734

SAST-PSNR [31] 0.8343 0.8272 0.6269 0.5524 0.6898 0.9423 0.9463 0.7968 0.0437 0.0581
AHC-PSNR [32] 0.8649 0.8619 0.6711 0.4988 0.6282 0.9567 0.9569 0.8155 0.0390 0.0505
OSS-PSNR (Pro.) 0.8623 0.8621 0.6724 0.5014 0.6338 0.9611 0.9590 0.8219 0.0370 0.0479

MS-PSNR [14] 0.7522 0.7411 0.5493 0.6557 0.8246 0.9045 0.9147 0.7401 0.0564 0.0740
IW-PSNR [16] 0.8501 0.8475 0.6508 0.5219 0.6590 0.9398 0.9327 0.7723 0.0458 0.0593

SSIM 0.7978 0.7870 0.5922 0.5891 0.7545 0.8261 0.8422 0.6416 0.0744 0.0978
D-SSIM [22] 0.8877 0.8794 0.6939 0.4451 0.5762 0.8872 0.8958 0.7076 0.0620 0.0800

SAST-SSIM [31] 0.9072 0.9048 0.7289 0.4215 0.5265 0.9144 0.9181 0.7473 0.0531 0.0702
AHC-SSIM [32] 0.9142 0.9117 0.7387 0.3944 0.5071 0.9188 0.9349 0.7728 0.0533 0.0685
OSS-SSIM (Pro.) 0.9373 0.9371 0.7814 0.3318 0.4363 0.9280 0.9352 0.7787 0.0491 0.0646

MS-SSIM [14] 0.8926 0.8870 0.7049 0.4328 0.5641 0.8910 0.8995 0.7131 0.0614 0.0787
IW-SSIM [16] 0.9243 0.9202 0.7537 0.3696 0.4775 0.9129 0.9179 0.7442 0.0550 0.0708

FSIM [17] 0.9064 0.9050 0.7280 0.4053 0.5287 0.9208 0.9247 0.7568 0.0517 0.0677
GSIM [18] 0.9279 0.9232 0.7535 0.3630 0.4666 0.9170 0.9192 0.7439 0.0544 0.0692
IGM [19] 0.8708 0.8654 0.6735 0.4871 0.6152 0.9322 0.9293 0.7657 0.0479 0.0628

GMSD [20] 0.8579 0.8528 0.6588 0.5014 0.6430 0.9213 0.9274 0.7595 0.0530 0.0675

IQA Measures Direct average Database size-weighted average
PLCC SRCC KRCC AAE RMS PLCC SRCC KRCC AAE RMS

PSNR 0.7686 0.7613 0.5827 3.0151 3.8432 0.8192 0.8197 0.6356 5.8453 7.4657
D-PSNR [22] 0.8625 0.8624 0.6792 2.6375 3.3498 0.8828 0.8853 0.7041 5.1963 6.5891

SAST-PSNR [31] 0.8963 0.8946 0.7170 2.3848 3.1029 0.9083 0.9090 0.7369 4.6944 6.1281
AHC-PSNR [32] 0.9155 0.9131 0.7446 2.1404 2.8147 0.9256 0.9253 0.7637 4.2077 5.5542
OSS-PSNR (Pro.) 0.9165 0.9145 0.7484 2.1085 2.7981 0.9270 0.9267 0.7678 4.1398 5.5189

MS-PSNR [14] 0.8506 0.8502 0.6685 2.5397 3.2663 0.8799 0.8823 0.7044 4.9546 6.3677
IW-PSNR [16] 0.9071 0.9032 0.7300 2.0760 2.7687 0.9214 0.9187 0.7553 4.0533 5.4341

SSIM 0.8294 0.8296 0.6397 2.6381 3.3569 0.8589 0.8643 0.6778 5.1630 6.5516
D-SSIM [22] 0.9041 0.9040 0.7251 2.2726 2.8002 0.9133 0.9179 0.7450 4.5159 5.5367

SAST-SSIM [31] 0.9141 0.9146 0.7434 2.2697 2.7820 0.9209 0.9274 0.7636 4.5085 5.5137
AHC-SSIM [32] 0.9179 0.9225 0.7568 2.2508 2.7466 0.9239 0.9341 0.7756 4.4817 5.4489
OSS-SSIM (Pro.) 0.9276 0.9313 0.7742 2.2144 2.7323 0.9292 0.9392 0.7884 4.4401 5.4569

MS-SSIM [14] 0.9026 0.9039 0.7279 2.1667 2.7424 0.9144 0.9204 0.7533 4.2796 5.3988
IW-SSIM [16] 0.9256 0.9268 0.7623 2.0587 2.5373 0.9314 0.9383 0.7833 4.0938 5.0298

FSIM [17] 0.9298 0.9298 0.7687 1.8149 2.3025 0.9391 0.9434 0.7946 3.5697 4.5243
GSIM [18] 0.9321 0.9319 0.7686 1.9835 2.4858 0.9357 0.9407 0.7854 3.9526 4.9449
IGM [19] 0.9181 0.9138 0.7481 1.7469 2.2861 0.9357 0.9339 0.7821 3.3739 4.4236

GMSD [20] 0.9148 0.9138 0.7456 1.7819 2.2807 0.9333 0.9348 0.7812 3.4432 4.4112

Additionally, we also tabulate and compare in Table IV the
correlation performances of FSIM, GSIM, FSIM-type, GSIM-
type of methods (X-FSIM and X-GSIM with X = {D, SAST,
AHC, OSS}) on the VDID2014 database, since this database
is composed of frequently used distortion types, and distinct
viewing distances and image resolutions. For a convenient

comparison across different IQA techniques, we highlight the
top two models with boldface. From Table III to Table IV,
four major observations can be found:

• First, the performance improvement of OSS model based
PSNR and SSIM relative to the original versions are more
than 6.5% and 4.3% on LIVE, more than 31% and 16%
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TABLE IV: Performance measures of FSIM-, GSIM-types of methods as well as the state-of-the-art IGM and GMSD on the VDID2014
database. We emphasize the best performed metrics in FSIM-, GSIM-types of algorithms.

Models PLCC SRCC KRCC AAE RMS Models PLCC SRCC KRCC AAE RMS
FSIM 0.9208 0.9247 0.7568 0.0517 0.0677 GSIM 0.9170 0.9192 0.7439 0.0544 0.0692

D-FSIM 0.9208 0.9247 0.7568 0.0517 0.0677 D-GSIM 0.9170 0.9192 0.7439 0.0544 0.0692
SAST-FSIM 0.9359 0.9402 0.7879 0.0465 0.0611 SAST-GSIM 0.9330 0.9270 0.7675 0.0477 0.0624
AHC-FSIM 0.9416 0.9491 0.8037 0.0449 0.0584 AHC-GSIM 0.9354 0.9329 0.7749 0.0481 0.0613
OSS-FSIM 0.9438 0.9528 0.8107 0.0438 0.0573 OSS-GSIM 0.9393 0.9388 0.7842 0.0465 0.0595

IGM 0.9322 0.9293 0.7657 0.0479 0.0628 GMSD 0.9213 0.9274 0.7595 0.0530 0.0675

TABLE V: Performance comparison of PSNR/SSIM-type of methods with F-Test (statistical significance). The symbol “+1”, “0” or “−1”
means that the metric is statistically (with 95% confidence) better, undistinguishable, or worse than the corresponding methods.

OSS-PSNR PSNR D-PSNR MS-PSNR IW-PSNR OSS-SSIM SSIM D-SSIM MS-SSIM IW-SSIM
LIVE +1 +1 +1 0 LIVE +1 0 0 −1
IVC +1 +1 +1 0 IVC +1 0 +1 0

Toyama +1 +1 +1 0 Toyama +1 +1 +1 0
VDID2014 +1 +1 +1 +1 VDID2014 +1 +1 +1 0

on IVC, more than 40% and 19% on Toyama, more than
10% and 11% on VDID2014, more than 20% and 12% on
direct average, and more than 13% and 8.6% on database
size-weighted average. It is apparent that the proposed
OSS method leads to consistent and considerable per-
formance improvements for modified PSNR and SSIM.
Furthermore, Table III presents that, for the average results
of correlation performance, our OSS model outperforms
MS-PSNR/SSIM and IW-PSNR, and competes well with
IW-SSIM and recent FSIM, GSIM, IGM and GMSD.

• Second, despite the high performance, the proposed tech-
nique has a low computational cost. In fact, our OSS
model runs by performing a pre-filtering based on adaptive
high-frequency clipping in the DWT domain, and then
resizing the filtered images to the optimal scale estimated
using the modified adaptive image resolution scaling.

• Third, it deserves attention that, in contrast to the MS and
IW based PSNR and SSIM methods as well as recently
proposed FSIM, GSIM, IGM, GMSD metrics, our model
is more effective on Toyama and VDID2014 databases.
This phenomenon is not just a coincidence, but can be
explained by the facts that: 1) the psychophysical testing
based MS and IW models were designed under the general
viewing distance of roughly 3∼4 times of the image
height, which results in their very high performances on
LIVE and IVC; 2) the total (or part) of subjective image
quality scores in Toyama and VDID2014 were obtained
using a far viewing distance of six times the image height.

• Fourth, our technique is robust not only among different
databases, but also among distinct single-scale IQA met-
rics. We have demonstrated the performance increase of
the OSS model based PSNR and SSIM on each database.
Also, we have validated the effectiveness of the proposed
OSS model for improving FSIM, GSIM and GMSD on
VDID2014, superior to state-of-the-art FSIM, GSIM, IGM
and GMSD. It is easy to find the remarkable performance
gains of PSNR over SSIM, FSIM, GSIM and GMSD
by using the OSS model. This phenomenon is perhaps
because, as compared to the simple PSNR, all of SSIM,
FSIM, GSIM and GMSD methods adopt low-pass filtering

modules that are very likely to conflict with the proposed
OSS model.

Besides, the statistical significance of the proposed OSS
model is evaluated by the F-test that computes the prediction
residuals between the converted objective scores (after the
nonlinear mapping) and the subjective ratings. Let F be the
ratio between two residual variances, and Fcritical (determined
by the number of residuals and the confidence level) be the
judgement threshold. If F > Fcritical, then the difference
of performance between these two metrics is significant. The
statistical significance between our technique and the other
IQA methods in comparison is listed in Table V, where the
symbol “+1”, “0” or “−1” means that the proposed metric
is statistically (with 95% confidence) better, indistinguishable,
or worse than the corresponding metric, respectively. It can be
easily viewed that our algorithm is in most cases superior to
the classical MS model and comparable to the currently opti-
mal IW model, which proves the effectiveness of the proposed
scheme. Furthermore, it should be noted that, compared to the
IW model that analyzes visual signals in the brain using the
multi-scale strategy and information content, our OSS method
works in an alternative stage of the HVS for simulating the
images projected on the retina. So some future work might
attempt to systematically incorporate OSS and IW schemes to
built a higher-performance model. Combining the results in
Table III, we also find that the OSS based PSNR and SSIM
are just a little inferior to state-of-the-art FSIM, GSIM, IGM
and GSMD on LIVE and IVC, while is equal to or higher
than those four IQA approaches on Toyama and VDID2014,
which confirms the effectiveness of our model as well.

We display scatter plots of DMOS versus PSNR-, SSIM-
FSIM-, GSIM-types of methods using various models on the
VDID2014 database in Fig. 7. From top to bottom, the first to
fifth rows are: the original IQA approaches, the downsampling
model, the SAST model, the AHC model, and the proposed
OSS model. The scatter plots of MS-PSNR/SSIM and state-
of-the-art IGM and GMSD are also illustrated in the sixth row
for comparison. Clearly, the convergence and monotonicity of
our OSS algorithm is better than other metrics presented in
this figure.
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Fig. 7: Scatter plots of DMOS vs. PSNR-, SSIM- FSIM- and GSIM-types of methods based on the downsampling model, the SAST model,
the AHC model, and the proposed OSS model, as well as MS-PSNR/SSIM and state-of-the-art IGM and GMSD on the VDID2014 database.
The (red) lines are curves fitted with the logistic function and the (black) dash lines are 95% confidence intervals.

In this article, we set the parameters used in the proposed
OSS model as follows, φ = 10, k = 2, ψ = 2, D0 = 512, α =
2 and β = 2. Due to the usage of many parameters, we want
to further discuss their sensitivity. For each of six parameters,
we enumerate four numbers in a proper interval around the
assigned value while fixing other five parameters. SRCC is
adopted here since it is one of the most popular performance
index and has been widely used to find the suitable parameters

in quite a few IQA metrics [3]-[4]. We report the results of the
sensitivity of parameters on the VDID2014 database in Table
VI. The values used in our OSS model are emphasized. It is
apparent that the proposed model has a stable performance
when the used parameters change, and thus it is robust and
tolerant to varying values of parameters.

Another comparison is conducted using two other versions
of the proposed algorithm. The first version only utilizes the
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TABLE VI: The sensitivity testing with different parameters according to SRCC values on the VDID2014 database.

φ 9 9.5 10 10.5 11 k 1.5 1.75 2 2.25 2.5
OSS-PSNR 0.9590 0.9590 0.9590 0.9590 0.9590 OSS-PSNR 0.9590 0.9590 0.9590 0.9590 0.9590
OSS-SSIM 0.9352 0.9352 0.9352 0.9352 0.9352 OSS-SSIM 0.9352 0.9352 0.9352 0.9352 0.9352

ψ 1.5 1.75 2 2.25 2.5 D0 496 504 512 520 528
OSS-PSNR 0.9483 0.9472 0.9590 0.9590 0.9590 OSS-PSNR 0.9583 0.9583 0.9590 0.9590 0.9590
OSS-SSIM 0.9213 0.9203 0.9352 0.9352 0.9352 OSS-SSIM 0.9339 0.9339 0.9352 0.9352 0.9352

α 1 1.5 2 2.5 3 β 1 1.5 2 2.5 3
OSS-PSNR 0.9592 0.9593 0.9590 0.9592 0.9588 OSS-PSNR 0.9583 0.9591 0.9590 0.9584 0.9586
OSS-SSIM 0.9382 0.9365 0.9352 0.9342 0.9334 OSS-SSIM 0.9381 0.9366 0.9352 0.9338 0.9323

TABLE VII: Performance comparison of distinct combinations of components employed in the proposed OSS model.

IQA Measures LIVE Toyama IVC VDID2014 IQA Models LIVE Toyama IVC VDID2014
PSNR 0.8756 0.6132 0.6886 0.8678 SSIM 0.9104 0.7870 0.7788 0.8422

SAST-PSNR 0.9160 0.8272 0.8889 0.9463 SAST-SSIM 0.9448 0.9048 0.8905 0.9181
AHC-PSNR 0.9314 0.8619 0.9019 0.9569 AHC-SSIM 0.9477 0.9117 0.8957 0.9349

MOD-SAST-PSNR 0.9073 0.8231 0.8819 0.9497 MOD-SAST-SSIM 0.9058 0.9010 0.8981 0.9326
SAST-AHC-PSNR 0.9298 0.8616 0.9053 0.9574 SAST-AHC-SSIM 0.9475 0.9372 0.8968 0.9278

OSS-PSNR 0.9328 0.8621 0.9041 0.9590 OSS-SSIM 0.9499 0.9371 0.9031 0.9352

TABLE VIII: Performance indices of testing IQA approaches on the TID2008 database. We bold the top two metrics.

Models PLCC SRCC KRCC AAE RMS Models PLCC SRCC KRCC AAE RMS
PSNR 0.7617 0.7718 0.5686 0.6708 0.8566 SSIM 0.7097 0.7270 0.5270 0.7226 0.9314

D-PSNR 0.8934 0.9097 0.7465 0.4209 0.5940 D-SSIM 0.8525 0.8742 0.6763 0.5409 0.6911
SAST-PSNR 0.8978 0.9111 0.7480 0.4130 0.5823 SAST-SSIM 0.8659 0.8836 0.6883 0.5212 0.6613
AHC-PSNR 0.8988 0.9137 0.7533 0.4067 0.5795 AHC-SSIM 0.8613 0.8872 0.6931 0.5158 0.6717
OSS-PSNR 0.9033 0.9174 0.7558 0.4039 0.5672 OSS-SSIM 0.8753 0.8967 0.7064 0.5021 0.6393
MS-PSNR 0.8855 0.9017 0.7308 0.4485 0.6143 MS-SSIM 0.8617 0.8792 0.6842 0.5323 0.6708
IW-PSNR 0.8799 0.8937 0.7079 0.4974 0.6281 IW-SSIM 0.9101 0.9044 0.7369 0.4086 0.5478

PAMSE [40] 0.8891 0.9162 0.7566 0.4485 0.6050 SMSE [40] 0.8457 0.8659 0.6764 0.5337 0.7054

modified SAST model (dubbed as MOD-SAST-PSNR and
MOD-SAST-SSIM) for preprocessing input image signals,
while the second one is composed of the original SAST model
and the AHC model (dubbed as SAST-AHC-PSNR and SAST-
AHC-SSIM). We indicate the five performance evaluations of
the aforesaid two versions as well as the original PSNR/SSIM,
SAST-PNSR/SSIM, AHC-PSNR/SSIM and OSS-PSNR/SSIM
on LIVE, IVC, Toyama and VDID2014 databases in Table
VII. Two important conclusions can be derived: 1) the two
versions tested both contribute to resulting performance of the
proposed OSS to some extent on particular database; 2) the
second version stated above largely advances the performance
of SSIM on the Toyama database.

A cross-validation experiment is also implemented by using
the large-scale TID2008 database, which is composed of 1,700
images by corrupting 25 reference images with 17 distortion
types at 4 distortion levels [34]. In this work we only validate
the IQA performance for the first 13 categories of structural
distortions and add a new perceptual fidelity aware MSE [40]
for comparison. Since there is not a definite viewing distance
for the TID2008 database, we suppose its distance value to be
the commonly used three times the image height. Table VIII
lists the performance measures of the original PSNR/SSIM,
D-PSNR/SSIM, SAST-PSNR/SSIM, AHC-PSNR/SSIM, OSS-
PSNR/SSIM, MS-PSNR/SSIM, IW-PSNR/SSIM and SMSE,
PAMSE. The results confirm that the proposed OSS model has
derived greatly high accuracy. In particularly, our technique
improves PSNR to a large extent, outperforming the classical
MS and recently designed IW, SMSE and PAMSE models.

We finally want to mention three important points. First,
an approximately optimal low-pass filter based on the retina
model may be used, but it is very complex and costs quite a
lot of time [41]. So we in this paper design the simple and
effective OSS model, aiming to find a good tradeoff between
the performance accuracy and the computational complexity.
Second, the modified SAST model is an isotropic filter for
simulating the process that the viewing angle shrinks in a
gradual way with the viewing distance increased, while the
anisotropic AHC model beforehand preserves the horizontal
and vertical directions. Hence the concatenation of the AHC
before the modified SAST, first filtering out high-frequency
information while preserving the horizontal and vertical di-
rections followed by resizing the image to the optimal scale,
can achieve such high performance. Third, a more reasonable
pre-filtering model should include visual saliency [42], which
will be explored in the future work.

V. SUMMARIZATION

Several contributions have been made in this work. First,
this is the first paper that comprehensively analyzes the impact
of viewing distance and image resolution on visual quality
in light of subjective and objective assessments. Second, the
proposed OSS model is simple. Third, this framework is robust
because it takes advantage of basic attributes of the HVS in
both DWT and spatial domains. Fourth, the proposed metric
accurately predicts visual quality of images shown at a far
viewing distance. Fifth, our algorithm is robust and tolerant to
varying values of parameters used.
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VI. CONCLUSION

This paper has investigated the problem of the influence of
viewing distance and image resolution on IQA performance.
First, we introduced a new dedicated viewing distance-changed
image database (VDID2014), which includes 160 images with
two typical image resolutions and associated 320 subjective
scores obtained at two typical viewing distances. Next, we
developed a novel optimal scale selection (OSS) model to deal
with this problem. In order to validly remove the undiscernible
details that are caused by the varying viewing distance and
image resolution, this model works via a cascade of adaptive
high-frequency clipping in the DWT domain and adaptive
resolution scaling in the spatial domain. A comparison of the
proposed OSS model with a large set of IQA approaches are
conducted on LIVE, IVC, Toyama, VDID2014 and TID2008
databases. Experimental results are provided to demonstrate
the effectiveness of the OSS method. Furthermore, it is worth
emphasizing that our metric is not limited in FR IQA, but also
possibly extended to improving RR and NR IQA metrics.
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